
N88-17234
EXPERT SYSTEM VERIFICATION CONCERNS

IN AN
OPERATIONS ENVIRONMENT

Mary Ann Goodwin and Charles C. Robertson
Rockwell Shuttle Operations Company

600 Gemini
Houston, Texas 77058-2777

ABSTRACT

The Space Shuttle community is currently developing a
number of knowledge-based tools, primarily expert
systems, to support Space Shuttle operations. This
effort is based on the wide-spread realization of the
potential benefits of these tools for premission flight
planning and real-time flight support. Evolution of
these tools into the operations environment is just
beginning.

It is proposed that anticipating and responding to the
requirements of the operations environment wil l
contribute to a rapid and smooth transition of expert
systems from development to operations, and that the
requirements for verification are critical t o this
transition.

This paper identifies the verification requirements of
expert systems to be used for flight planning and
support and compares them t o those of existing
procedural software used for flight planning and
support. It then explores software engineering
concepts and methodology that can be used to satisfy
these requirements, t o aid t rans i t ion f r o m
development to operations and t o support the
operations environment during the lifetime of expert
systems. Many of these are similar to those used for
procedural software.

INTRODUCTION

The range and diversity o f specialties and
subspecialties required to support Space Shuttle
operations develop an enormous amount of the type
of skill recently designated "expertise". Expert systems
to support flight operations appear to offer significant
potential benefits to flight design and dynamics, such
as:

0 Reducing the man ower and resources required for
flight design and 8 ynamics.

Reducing the dependency on highly skilled people
to intervene periodically in fairly standardized
tasks, thus freein them for new development or
nonstandard probgems.

0 Preventing single-point failures or delays due to
the unavailability o f skilled "experts"; and,

similarly, reserving the "corporate knowledge
base" should a skilled person become unavailable.

0 Improving the quality of certain decisions which
require more factors than a human can
comfortably consider at once, but which are no
problem for a computerized expert system.

A number of expert systems have been built and
others are presently being built 50 that these benefits
can be realized. Many more can be expected as the
technology becomes an accepted part o f the
engineer's problem-solving capability and a larger skill
base is available for their implementation.

Most o f the existing systems are considered
prototypes. However, once in the operations
environment, they must satisfy the demands of that
environment. Because of their potential for affecting
flight design decisions that have broad and sometimes
critical implications, engineering confidence in the
veracity of their results across their lifetime will be of
foremost importance to their successful acceptance
and integration into flight operations. Therefore,
anticipating and preparing to support verification
durin the lifetime of the expert system should ensure

time and the human and computer resources required
to maintain them.

Following is a discussion of software requirements in
the Shuttle operations environment, what can be
considered a verified expert system, historical
approaches t o aid and accomplish verification of
conventional programs, and, last, approaches that can
be taken during prototype development to aid
verification and ease integration of expert systems
into the operations environment.

that t R eir potential is realized as well as reduce the

SHUTTLE OPERATIONS SOFTWARE ENVIRONMENT

Flight design and flight d namics software have an
erformance

requirements. Premission conceptual t ight design
may require fairly simple analytic models, whereas
operations flight design will require extremely high
fidelity models that run much slower than reat-
time. Fli ht dynamics, software must support real-

possible performance achievable under that constraint

overlapping set of mo d y eling and

time pe r? ormance and, at the same time, the best

203

i s desired. Expert systems for f l ight design and
dynamics must meet these same modeling and
performance req u i rements.

Presently, a great deal of effort is being made to
streamline and standardize Shuttle fli ht desi n and

flight products and ensuring their quality have been
explicitly defined and documented. Techniques are
being implemented to track product development, to
ensure that the defined procedures are followed and
that approved software are used fo r 'product
generation. Software approved fo r product
generation i s being placed under configuration
control, and changes must be formally requested,
approved, and verified prior to being made available
to the flight designers.

When expert systems are used in the eneration of

expert system ecision-makin capabilit will be
embedded in the application so ware, so t at it will
simply account for a portion of a larger system that is
under configuration control.

Greater use of database technology is planned to
manage f l ight data and ensure i t s integrity and
commonality among products. Electronic storage and
retrieval will pass data among the software programs
generating the products. Expert systems will also be
required to access and store information in these
data bases.

This environment will require that expert system
verification be one component in the verification
process of a complex multilanguage software system
that includes conventional languages such as Fortran
or C, the embedded expert system shell language, and
tne embedded database query language.

dynamics. For example, procedures 9 s or deve oping

fli ht products and in support of flight d ynamics, they
wi P I become sub'ect to the same controls. Often the

R 6 d

WHAT IS A VERIFIED EXPERT SYSTEM?

If we are to produce "ciorrect" expert systems, we must
produce systems that reflect "correct"
which for practical pur oses may be considered t e
"best" knowledge, j u dp gement, or decision-making
capability the expert possesses or can derive. The
verification problem as discussed herein is to provide
expert s stems that reflect this knowledge and will

Responsibility for the "correctness" of knowledge
belongs by definition to the expert. In flight design
this i s analogous t o responsibi l i ty for t he
requirements for conventional f l ight software
belonging to the flight designer. For the expert
system, the knowledge must first be correctly acquired
from the expert, a responsibility shared by the expert
and the "knowledge engineer" or implementer. Then
the implementer must reflect exactly what the expert
means b creating a rule and fact base in the expert

systems. The implementation must match the
specifications.

knowledT.

never re r lect any contrary results.

s stem s i ell language. This sounds very familiar to
t 6 ose who have generated conventional software

Verification of an expert system, then, must verify the
adequacy and accuracy of the knowledge base
implementation accord i ng to specific perf or ma nce
criteria.

LESSON FROM THE PAST (AND PRESENT)

Existing flight desi n and dynamics software reflect
various design and gevelopment software engineering
methodologies that evolved over the years the
software was developed, i.e., the design and
development techniques and philosophies vary widely.

Verification is generally considered to be one part of
the software engineering process, but the ease with
which i t can be accomplished has been recognized as
bein dependent on the techniques and methods used

one does design and implementation affects how one
does verification. Approaches that encourage early
discovery of errors reduce the time, design impact, and
computer and human resources required for
corrections.

Verification first occurs prior to the initial delivery of
software and it recurs each time the software is
modified over i ts lifetime. For some fli ht software,
the lifetime can be considered essentiajy unlimited
Modifications of flight design software, whethe;
procedural or expert system, can be expected as

? New flight design requirements occur.

0 The knowledge in some area so improves that it is
desirable for the flight design software to reflect
these improvements.

0 Updates are made to the Shuttle hardware or
software.

a Si nificant changes in the state of the art of
sogware and hardware occur that offer desired
performance 'improvements.

It is now recognized that the cost to maintain fli ht

development cost. Measures taken d u r i n g
development to reduce cost during maintenance are
cost effective.

A great deal of research has been done and effort
made to develop techniques to support verification of
conventional software. These techniques can be
placed in t w o categories: (1) desi n and
implementation techniques that either re d uce the
likelihood of errors or make them easier to find and
correct; and (2) software development support tools
that detect and remove errors from the code.

The following techniques are in the first category:

0 Project management techniques such as top-down
development, design and code reviews, use of
program libraries, etc.

9 Pro'ect design techniques, such as top down design,
code modularization, and, more recently,

for t a e preceding development phases. That is, how

software dur ing i t s l i fet ime far exceeds t 9h e

204

information hiding, object-oriented design, entity-
relationship modeling, data flow diagrams, etc.

0 Languages modifications which simplify code and
make it exier to understand and debug; e.g.,
structuec' code,strong typing.

0 Documentation standards, both external and
internal to the code.

0 Coding standards which not only standardize how
code is written but which may also outlaw code
considered to be error-prone.

The following techniques are in the second category:

0 Development of static code analyzers and dynamic
code analyzers. With static code analyzers, the
code is parsed, and the parsed information is stored
in such a manner that a postprocessor can cross-
reference information t o detect errors. An
example is locating variables used but not set or
vice versa. With dynamic code analyzers, the code is
"instrumented" with "probes". Special-purpose
code is inserted at strategic locations to capture
and output data of interest as a routine executes.
This output is then postprocessed to provide
information to aid verification. For example, it is
possible to determine what part of the code is
executed and what is not for al l test cases in a test
case library (See reference 1)

0 Improvement of compilers to aid error detection.

0 Development of test case libraries that satisfy such
criteria considered beneficial t o verification as
exercising as much of the code as possible and
doing "stress testingl'to exercise numerically
sensitive code.

Development of an automated software development
and maintenance support environment for use in all
phases of program development, from program
design to code generation and program verification, IS
presently occurring and may greatly impact the
update of existing flight software systems and the
creation of future systems.

VERIFICATION TECHNIQUES FOR OPERATIONAL
EXPERT SYSTEMS

Enter expert systems into the Space Shuttle operations
environment. A large flight design simulation could
conceivably have "pockets of reasoning" for decision-
makin at various points in i t s execution. A decision
mightse made to determine the type of flight t o
simulate, the characteristics o f the sensors to be
simulated, or the environmental models to be invoked.
Another decision m igh t be made t o o u t p u t
recommendations a b o u t t h e s imulat ion o r
information about i t s results that help the flight
designer. These pes of decisions presently occur at

occur with a man in the loop and sometimes in an of -
line mode. Therefore, one might consider them
already a part of the software design, and it appears
reasonable that the desi n of an expert system

/ defined points in 7 light design programs. They simp1

decision-making capability B or a flight simulation can

be accomplished by extending the conventional
system design techniques.

One technique that successfully attempted to do this is
documented in references 2 and 3. The well-known
hierarchical input process output (HIPO) technique was
used to develop requirements, construct the design,
and support implementation of an expert system to
demonstrate automated rendezvous. Verification was
then conducted systematically because of the method
of design and implementation.

In the pragmatic Shuttle flight operations climate,
where expert system design, development and
verification is one part of the design, development,
and verification of an existing or emerging software
system using conventional and database query
languages, it appears that it would be helpful t o
identify where commonality in verification techniques
may be applied and where uniqueness is required in
the verification of the overall system.

The interfaces between the symbolic reasoning (or
expert system) "modules" and conventional modules
or database tables or files can ident i fy type
conversions required to go from symbolic facts in the
expert system module to di ita1 data or other data

information should be amenable t o data f low
dia rams, data dictionaries, or other datalinformation

Language improvements can be found as revisions to
expert system shells are released. Of great significance
for flight design and support is the development of
expert system shells that work on conventional
hardware and al low the shell language t o be
embedded with conventional Ian uages. While this
does not appear to support veriyication directly, it
allows simpler and more natural interfaces with the
rest of the software system which will therefore be less
error prone.

A set of preliminary experimental documentation
standards and complementary coding standards have
been defined (reference 4) for the Automatic
Reasoning Roo1 (ART) developed b Inference, and a
subset has been adapted to the Clps shell langua e
developed at the Johnson Space Center (reference 3.
The standards have been successfully adapted to a
number of expert systems being developed to support
flight design (references 6 and 7).

The standards were constructed to support the later
development of a maintenance tool. Conse uently,
they were designed using ke ords that coula cue a

comments. Two categories of comments were defined:
those to support user explanation of the rules and
those to support the programmer in implementation
and maintenance. Comments in the first category
were intended t o be extracted automaticall t o

established were designed to support an automated
tool that could generate cross-reference information
for rules, patterns, and variables.

The standards are divided into three areas. First, a
major file is defined which includes the history of the

types in conventional modu B es and vice versa. This

trac I C ing techniques.

parser to the contents o r" the various types of

produce documentation for the users. The stan d' ards

205

expert system and other pertinent information
regarding supporting functions and files. All files
should be loaded from this major file, which is the
program driver. The second area is the declarative
knowledge which consists o f ART v iewpoint
information and definitions of relations, facts, and

lobal variables. The third area deals with procedural 51 nowledge, which consist of rules. The commenting
template and explanations for this third area are given
in figure 1. It has been found that the procedural
template can be adapted to the design phase and used
for knowledge reviews". An additional use found for
the procedural knowledge template is training
support. As the desi n expands from functional to
various levels of detai?, the declarative and major file
information can be developed as needed.

The authors propose that a relational database
management system could be used to perform useful
static analysis for error detection of rule-based expert
systems and could be implemented independently or
in conjunction with the proposed automation of the
documentation and coding standards just mentioned.
The relational theory allows semantic relations to be
conveniently expressed. Some of the simpler relations
that could be expressed as relational tables are
defined in figure 2. Table 1 lists various relationships
that could then be determined by querying the tables.
Some of the most aggravating problems that can occur
during debuggin have to do with simple typing
errors that coul8 often be detected by locating
occurrences of a unique, one-time-only pattern.
Properly constructed data base queries could isolate
unique variable names that are likely in error. Further
error detection possibilities exist that space does not
permit exploring (e.g., see reference 8).

Several other possibilities exist. It is apparent that with
sufficient effort the tables in figure 1 could be utilized
to automatically construct the expert system shell
code, which would be error free. The specific nuances
o f the languages in expert system shells w i l l
undoubtedly introduce aggravating problems in the
implementation of the above, but the goals seem
achievable.

Additionally, it is possible to express similar t pe of

such as that captured by the system in reference 1. The
query language could then verify interfaces across the
two languages by queryin the applicable information

relational information about the conventiona r code,

in particular tables for eac 8 language.

CONCLUSIONS

As experts stems are integrated into the Shuttle flight

project management and software development and
maintenance plan that en tom passes convention a I
procedural languages, the expert system shell
language, and database query Ian ua es is needed so

cost and results in the highest confidence in the
software system over the life cycle of the f l ight
software.

This goal seem achievable. Design and development
methods and coding and documentation standards

design an d support software packages, an integrated

that verification can be accomplis %I? e a t a minimum

based on those used for procedural code have been
applied to expert system prototypes with good results.
Additionally, verification tools for expert systems
similar to those for procedural code but relying on
database systems to simplify implementation appear
conceptually t o be beneficial and extendable to
include conventional code. The latter method could
possibly be extended to produce expert system shell
code automatically.

The ultimate validity of the expert system reasoning,
however, lies with the expert. No amount of
programmer effort can improve the judgement or
reasoning communicated to the programmer by the
expert.

It is recommended that seriously developing and
ref ining these methods as part o f prototype
development will contribute greatly t o a smooth
transition of expert system programs from the
development to the Shuttle operations environment.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the community of
individuals from the Johnson Space Center Mission
Planning and Analysis Division, Computer Science
Corporation, LinCom Corporation, McDonnell Douglas
Corporation, and Rockwell Shuttle Operations
Company, who contributed to the documentation
standards of reference 4. Grace Hua and Ann 5 . Baker
o f CSC must be singled out for their special
contributions.

REFERENCES

1. Software Development and Maintenance Aids
Catalog, JSC-22342. Dennis Braley, Mission
Planning and Analysis Division, JSC, October, 1986.

2. Software Engineering Techniques Used to Develop
an Expert System for Automating Space Vehicle
Rendezvous, Daniel C. Bochsler, LinCom
Corporation, and Mary Ann Goodwin, Johnson
Space Center, Second Annual Workshop on
Robotics and Expert Systems, Johnson Space Center,
June, 1986.

3. A Software Engineering Approach to Expert System
Design and Verification, David C. Bochsler, LinCom
Corporation, and Mary Ann Goodwin, Johnson
Space Center, Conference on Artificial Intelligence
for Space Applications, Huntsville, Alabama,
November, 1986.

4. Documentation Standards for Expert Systerr t, JSC
Memorandum FM7/86-187, Robert H. Brcim,
October 22,1986.

5. CLIPS Reference Manual, JSC-22552,Christopher 1.
Culbert, Mission Planning and Analysis Division,
Johnson Space Center, March, 1987.

6. Orbital Navigation Expert System (ONEX);
McDonnell Douglas Memorandum TM1.2-TM-
FM87044-022; A. 1. Reichn5B; December 29,1986.

206

Guidelines and System Re uirements fo r t he A) LEFTHANDSIDETABLE
’Onboard N a v i g a t i o n TONAV) Console
Expert/Trainer System, JSC-22433; Ar t i f ic ia l RULE C ~ ~ ~ ~ ~ ~ N CON DlTlON CLASSIFICATION

Division, JSC, December, 1986.

Knowledge Base Verification; Tin A. Nguyen,
Walton A. Perkins, Thomas J. Laffey, Deanne
Pecora; AI Magazine V.8, N.2, Summer, 1987.

Intelligence Section, Mission Planning and Analysis NAME
<condition-l > < (function, e.g. control,’test,

<name> <condition-2 > pattern, external-function,
etc.) >

B) RIGHT HAND SIDE TABLE

;;; GROUP
;; <group-name>
;; <narration on purpose, description of control, objective,

assumptions, etc.
;;; HISTORY AND RESPONSIBILITY: GENERAL

(contains information common t o all rules in the group)
;; Nameof programmer(s): <name>
;; Name of expert(+ <name>
;; Created on: <date>
;;; CONTROL FACTS

; <fact>
(those unique facts inherited from a parent group)

(Used for cross-referencing)
;;; PARENTS

;; <parent group-name>

(defrule < rule-name >
;; If
;;
;; Then
;;
;; End

<english sentence definition of the rule conditions>

<english sentence definition of the rule actions>

<actual rule body> ; simple programmer code comment

1 ... ,,,
I ,

,,
..
..
.. ,.
#,

I ,

,,,
, I

..

...

HISTORY AND RESPONSIBILITY: EXCEPTIONS AND UPDATES
Name of programmer(S): <name>
Name of expert(S): <name> (rule-specific exception

Created on: <date>
Modified by: <name>
Modified on: <date> (rule-specific update)
RATIONALE
<narrative on heuristics, reasoning, rule-specific assumptions
and limitations, etc. >

to general)

ACTION NAME SYNTAX
RULE ACTION CLASSIFICATION

<action > < (function, e.g. external
function, pattern-set, pattern- <name> <action-2> retract, etc.)>

C) RULE SALIENCE TABLE

RULE CON DlTlON CLASS1 FlCATlON NAME
<name > <number >

Figure 2 - Proposed Expert System Static
Analyzer Rule Data Base Format

TABLE I - POSSIBLE USES OF EXPERT SYSTEM STATIC
ANALYZER DATA BASE

0 Reconstruct rules, including, for example all rules
subject t o the same condition

0 Find patterns set on LHS, but not used on RHS and
vice versa
Determine effect of new rules or rule changes on
rule base
- If new rule sets or retracts a pattern, other rules

that use that pattern can be identified
- Rule dependenciescan be identified.
Find all rules with same salience, or ordered by
increasing or decreasing salience

0 Find all rules with same control pattern
0 Find all external function calls and rules which

made call
0 Construct English description of rules. (Requires

tables not shown in Figure 2.)

Figure 1 -Template for Procedural Knowledge
Documentation

207

